Constructs the agent's scratchpad, which is a string representation of the agent's previous steps.
Array of AgentStep instances representing the agent's previous steps.
Promise resolving to a string representing the agent's scratchpad.
Decide what to do given some input.
Steps the LLM has taken so far, along with observations from each.
User inputs.
Optional callbackManager: CallbackManagerCallback manager to use for this call.
Action specifying what tool to use.
Prepare the agent for output, if needed
Return response when agent has been stopped due to max iterations
Optional callbackManager: CallbackManagerStatic createCreate prompt in the style of the zero shot agent.
List of tools the agent will have access to, used to format the prompt.
Optional args: ChatCreatePromptArgsArguments to create the prompt with.
Static deserializeStatic fromLLMAndCreates a ChatAgent instance using a language model, tools, and optional arguments.
BaseLanguageModel instance to use in the agent.
Array of Tool instances to include in the agent.
Optional args: ChatCreatePromptArgs & AgentArgsOptional arguments to customize the agent and prompt.
ChatAgent instance
Static getReturns a default output parser for the ChatAgent.
Optional _fields: OutputParserArgsOptional OutputParserArgs to customize the output parser.
ChatAgentOutputParser instance
Static validateValidates that all tools have descriptions. Throws an error if a tool without a description is found.
Array of Tool instances to validate.
void
Generated using TypeDoc
Agent for the MRKL chain.